Prostatic Acid Phosphatase Is an Ectonucleotidase and Suppresses Pain by Generating Adenosine
نویسندگان
چکیده
Thiamine monophosphatase (TMPase, also known as fluoride-resistant acid phosphatase) is a classic histochemical marker of small-diameter dorsal root ganglia neurons. The molecular identity of TMPase is currently unknown. We found that TMPase is identical to the transmembrane isoform of prostatic acid phosphatase (PAP), an enzyme with unknown molecular and physiological functions. We then found that PAP knockout mice have normal acute pain sensitivity but enhanced sensitivity in chronic inflammatory and neuropathic pain models. In gain-of-function studies, intraspinal injection of PAP protein has potent antinociceptive, antihyperalgesic, and antiallodynic effects that last longer than the opioid analgesic morphine. PAP suppresses pain by functioning as an ecto-5'-nucleotidase. Specifically, PAP dephosphorylates extracellular adenosine monophosphate (AMP) to adenosine and activates A1-adenosine receptors in dorsal spinal cord. Our studies reveal molecular and physiological functions for PAP in purine nucleotide metabolism and nociception and suggest a novel use for PAP in the treatment of chronic pain.
منابع مشابه
Deceased expression of prostatic acid phosphatase in primary sensory neurons after peripheral nerve injury.
Prostatic acid phosphatase (PAP) is expressed in nociceptive dorsal root ganglion (DRG) neurons and functions as an ectonucleotidase that dephosphorylates extracellular adenosine monophosphate (AMP) to adenosine to suppress pain via activating A1-adenosine receptor (A1R) in dorsal spinal cord. However, the effect of peripheral nerve injury on the expression of PAP has not been reported until no...
متن کاملRecombinant Mouse PAP Has pH-Dependent Ectonucleotidase Activity and Acts through A1-Adenosine Receptors to Mediate Antinociception
Prostatic acid phosphatase (PAP) is expressed in nociceptive neurons and functions as an ectonucleotidase. When injected intraspinally, the secretory isoforms of human and bovine PAP protein have potent and long-lasting antinociceptive effects that are dependent on A(1)-adenosine receptor (A(1)R) activation. In this study, we purified the secretory isoform of mouse (m)PAP using the baculovirus ...
متن کاملProstatic acid phosphatase is the main acid phosphatase with 5'-ectonucleotidase activity in the male mouse saliva and regulates salivation.
We have previously shown that in addition to the well-known secreted isoform of prostatic acid phosphatase (sPAP), a transmembrane isoform exists (TMPAP) that interacts with snapin (a SNARE-associated protein) and regulates the endo-/exocytic pathways. We have also shown that PAP has 5'-ectonucleotidase and thiamine monophosphatase activity and elicits antinociceptive effects in mouse models of...
متن کاملWhy do male mice spit soluble enzymes that hydrolyze extracellular nucleotides? Focus on "Prostatic acid phosphatase is the main acid phosphatase with 5'-ectonucleotidase activity in the male mouse saliva and regulates salivation".
THE 5=-ECTONUCLEOTIDASES FOUND on the surface of most mammalian cells and in blood serum serve as a source of adenosine derived from extracellular nucleotide degradation (11). The 5=-ectonucleotidases are phosphatases whose substrate is extracellular adenosine 5=-monophosphate (AMP) generated from adenosine 5=-triand diphosphates (ATP and ADP) released from injured tissues to stimulate cellular...
متن کاملCharacterization of Ectonucleotidases in Nociceptive Circuits
Thiamine monophosphatase (TMPase, also known as fluoride-resistant acid phosphatase) is a classic histochemical marker of small-diameter dorsal root ganglia neurons. The molecular identity of TMPase is currently unknown. We found that TMPase is identical to the transmembrane isoform of prostatic acid phosphatase (PAP), an enzyme with unknown molecular and physiological functions. We then found ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 60 شماره
صفحات -
تاریخ انتشار 2008